Miriam Elia M.Sc.

Wiss. Mitarbeiterin
Professur für Softwaremethodik für verteilte Systeme
Telefon: +49 821 598 2472
E-Mail:
Raum: 3004 (N)
Adresse: Universitätsstraße 6a, 86159 Augsburg

Kurzlebenslauf

  • Seit Dezember 2021: Wissenschaftliche Mitarbeiterin, Professur Softwaremethodik für verteilte Systeme, Universität Augsburg
  • 2021: Master of Science (Wirtschaftsinformatik), Universität Augsburg
  • 2019: Bachelor of Science (Wirtschaftsinformatik), Universität Augsburg
  • 2016: Bachelor of Education (Englisch & Französisch), Universität Augsburg

Forschungsbereiche

  • Responsible AI
  • Machine Learning in Healthcare
  • Certifiable AI in Medicine
  • Creation of a Generic and Customizable Methodology based on Quality Gates towards Certifiable AI in Medicine

Abschlussarbeiten

  • "Prompt Engineering im Rahmen einer automatisierten Beantwortung von Kundenanfragen - Konzept und prototypische Umsetzung" -  Bachelorarbeit
  • "ResearchConnect - A Smart Web-Application to Enhance Interdisciplinary Work through Intelligent Matching of Scientists based on their Disciplines" - Bachelorarbeit
  • "Zusammenführung multimodaler Datenquellen in einer Anwendung zur Analyse des Ösophagus für die Diagnoseunterstützung von Achalasie" - Masterarbeit

Publikationen

2024 | 2023 | 2021

2024

Vivian Grünherz, Alanna Ebigbo, Miriam Elia, Alessandra Brunner, Tamara Krafft, Leo Pöller, Pia Schneider, Fabian Stieler, Bernhard Bauer, Anna Muzalyova, Helmut Messmann and Sandra Nagl. 2024. Automatic three-dimensional reconstruction of the oesophagus in achalasia patients undergoing POEM: an innovative approach for evaluating treatment outcomes. DOI: 10.1136/bmjgast-2024-001396
PDF | BibTeX | RIS | DOI

Luuk H. Boulogne, Julian Lorenz, Daniel Kienzle, Robin Schön, Katja Ludwig, Rainer Lienhart, Simon Jegou, Guang Li, Cong Chen, Qi Wang, Derik Shi, Mayug Maniparambil, Dominik Müller, Silvan Mertes, Niklas Schröter, Fabio Hellmann, Miriam Elia, Ine Dirks, Matias Nicolas Bossa, Abel Diaz Berenguer, Tanmoy Mukherjee, Jef Vandemeulebroucke, Hichem Sahli, Nikos Deligiannis, Panagiotis Gonidakis, Ngoc Dung Huynh, Imran Razzak, Reda Bouadjenek, Mario Verdicchio, Pasquale Borrelli, Marco Aiello, James A. Meakin, Alexander Lemm, Christoph Russ, Razvan Ionasec, Nikos Paragios, Bram van Ginneken and Marie-Pierre Revel Dubios. 2024. The STOIC2021 COVID-19 AI challenge: applying reusable training methodologies to private data. DOI: 10.1016/j.media.2024.103230
PDF | BibTeX | RIS | DOI

2023

Miriam Elia and Bernhard Bauer. 2023. A methodology based on quality gates for certifiable AI in medicine: towards a reliable application of metrics in machine learning. DOI: 10.5220/0012121300003538
PDF | BibTeX | RIS | DOI

Fabian Stieler, Miriam Elia, Benjamin Weigell, Bernhard Bauer, Peter Kienle, Anton Roth, Gregor Müllegger, Marius Nann and Sarah Dopfer. 2023. LIFEDATA - a framework for traceable active learning projects. DOI: 10.1109/REW57809.2023.00088
PDF | BibTeX | RIS | DOI

Miriam Elia, Tobias Peter, Fabian Stieler, Bernhard Bauer, Sandra Nagl, Alanna Ebigbo and Vivien Grünherz. in press. Precision medicine for achalasia diagnosis: a multi-modal and interdisciplinary approach for training data generation [Abstract].
PDF | BibTeX | RIS | URL

Dominik Mueller, Silvan Mertes, Niklas Schroeter, Fabio Hellmann, Miriam Elia, Bernhard Bauer, Wolfgang Reif, Elisabeth André and Frank Kramer. 2023. Towards automated COVID-19 presence and severity classification. DOI: 10.3233/shti230309
PDF | BibTeX | RIS | DOI

2021

Miriam Elia, Carola Gajek, Alexander Schiendorfer and Wolfgang Reif. 2021. An interactive web application for decision tree learning.
PDF | BibTeX | RIS | URL | URL

Suche