Dr. Fabian Stieler

Research Assistant
Software Methodologies for Distributed Systems
Phone: +49 821 598-2471
Email:
Room: 3005 (N)
Open hours: by arrangement
Address: Universitätsstraße 6a, 86159 Augsburg

Short Curriculum Vitae

  • 2017: Bachelor of Science, Wirtschaftsinformatik
  • 2019: Master of Science, Informatik & Informationswirtschaft
  • 2024: Doctorate in Natural Sciences

Fields of Research

  • Machine Learning Operations (MLOps)
  • Explainable Artificial Intelligence (XAI)
  • Active Learning (AL)

Mentored Theses

  • Reduction of Annotation Effort - A Comparison of Active Learning Frameworks (Bachelorthesis), Original Title: "Reduktion des Annotationsaufwands - Ein Vergleich von Active Learning Frameworks"
  • Bias Detection using Interpretable Machine Learning Methods (Bachelorthesis)
  • Evaluating Explainability in the Context of Active Learning (Masterthesis)
  • Interpretable Machine Learning with ECG Data (Bachelorthesis), Original Title: "Interpretierbares Maschinelles Lernen mit EKG Daten"
  • Model Explanations as Quality Gate in Machine Learning Pipelines (Masterthesis)

Publications

2023

Fabian Stieler and Bernhard Bauer. 2023. Git workflow for active learning - a development methodology proposal for data-centric AI projects. DOI: 10.5220/0011988400003464
PDF | BibTeX | RIS | DOI

 

Miriam Elia, Tobias Peter, Fabian Stieler, Bernhard Bauer, Sandra Nagl, Alanna Ebigbo and Vivien Grünherz. in press. Precision medicine for achalasia diagnosis: a multi-modal and interdisciplinary approach for training data generation [Abstract].
PDF | BibTeX | RIS | URL

 

2022

Fabian Stieler, Marius Nann and Bernhard Bauer. 2022. Vertrauenswürdige KI in der Medizin - von effizienter Datenannotation bis intuitiver Modellerklärung.
BibTeX | RIS

 

2021

Fabian Stieler, Fabian Rabe and Bernhard Bauer. 2021. Towards domain-specific explainable AI: model interpretation of a skin image classifier using a human approach. DOI: 10.1109/CVPRW53098.2021.00199
PDF | BibTeX | RIS | DOI

 

2020

Fabian Stieler, Fabian Rabe and Bernhard Bauer. 2020. Federated medical data - how much can deep learning models benefit? [Poster].
PDF | BibTeX | RIS

 

2018

Harald Schmidbauer, Angi Rösch and Fabian Stieler. 2018. Patterns of interest in industrial brands: Instagram media uploads and sentiment.
PDF | BibTeX | RIS | URL

 

 

Harald Schmidbauer, Angi Rösch and Fabian Stieler. 2018. The 2016 US presidential election and media on Instagram: who was in the lead?. DOI: 10.1016/j.chb.2017.11.021
PDF | BibTeX | RIS | DOI

 

2017

Harald Schmidbauer, Angi Rösch and Fabian Stieler. 2017. Patterns of interest in industrial brands: media uploads to Instagram.
BibTeX | RIS

Search